lopscience = [lopscienceioporg

Home Search Collections Journals About Contactus My IOPscience

Potts model on a Cayley tree and logistic equation

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2000 J. Phys. A: Math. Gen. 33 929
(http://iopscience.iop.org/0305-4470/33/5/309)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.124
The article was downloaded on 02/06/2010 at 08:45

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/5
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

J. Phys. A: Math. Ger83(2000) 929-943. Printed in the UK Pll: S0305-4470(00)06829-3

Potts model on a Cayley tree and logistic equation

F Wagner, D Grensing and J Heide

Institut fur Theoretische Physik und Astrophysik, der Christian Albrechts Uniémit Kiel,
LeibnizstraRe 15, 24098 Kiel, Germany

Received 11 August 1999, in final form 28 October 1999

Abstract. The g-state Potts model on a Cayley tree can be solved by a recursion formula
depending on the properties at the surface. The model on a Bethe lattice is obtained by extrapolating
the interior of a Cayley tree sufficiently far from the surface in order to have a stable fixed point of
the recursion. Fog > 2 we find a second-order transition of percolation type at the Bethe—Peierls
temperature and a first-order transition at a higher temperature. For coordination numBehe
recursion extrapolated tp= 1 is identical to the logistic equation. The Feigenbaum route to chaos
appears for antiferromagnetic coupling of the Potts model. The first period doubling corresponds
to a multicritical point in the phase diagram of the Potts model.

1. Introduction

Theg-state Potts model [1,2] ought to be solvable on a Cayley tree with coordination ngimber
since loop expansion of zero order [3] or mean field should be exact on an infinite-dimensional
lattice. However, one has to distinguish [4, 5] between a large finite Cayley tree and the
interior of an infinitely extended tree, also called a Bethe lattice. Extrapolation of the former is
nontrivial, since the surface of a Cayley tree cannot be neglected. One interesting aspect of this
model is that it can serve as a testing ground for properties of phase transitions. Zero-order loop
expansion or Bethe—Peierls approximation [3] yield a second-order phase transition [6—10] at
the inverse Bethe—Peierls temperatife = In(1 +¢/(z — 2)) for all g andz > 2. In
contrast, one obtains at a temperature abéveby applying Landau theory [11,12], a first-
order transition fory > 2. The claim of [13, 14] for unusual transitions in the Ising case

g = 2 contributed additional confusion. A partial answer to this contradiction has been given
by Peruggiet al [15], who calculated the free energy per site recursively on a Bethe lattice.
They found forg > 2 a first-order transition above the Bethe—Peierls temperattrétself

turned out to be the endpoint of spinodal curves due to metastable states (see also [16]). The
unusual transitions mentioned above are due to the dominance of surface sites. Those models
and possible generalizations [17—-21] may be interesting, but are not related to the Bethe lattice.
The work of Peruggét al[15] leaves open the question of how to obtain these results from the
extrapolation of a Cayley tree. In afirst attempt Gujrati [22] derived a recursion formalism valid
for a Cayley tree of arbitrary magnitude. Similar methods were applied later in [23]. Using
only fixed points the results of [15] have been confirmed, but the stability of the recursion has
not been discussed. One of the aims of this paper is to use this stability to distinguish different
phases. Another interesting point of the Potts model lies in considering its thermodynamic
functions as analytic functions of the numigeof states. Valueg < 1 yield the connection of
various models to statistical physics [1]. Extrapolatiog te 1 in the zero-field casd(= 0)

for ferromagnetic couplingK > 0) is usually interpreted as bond percolation [24]. The
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Figure 1. The left part gives the decomposition of the Cayley tree inbwanches connected to

an origin with spinoe and shell indexs = 0. The right part illustrates the recursion relation to
compute a branch starting at shefirom those starting at + 1. Both figures are examples of the
coordination number = 3.

question remains, however, of how the= 1 limit is to be interpreted fof. # 0, especially
in the case of antiferromagnetic couplikg< 0.

This paper is organized in the following way. In section 2 we sketch the recursion
formalism of Gujrati [22]. We also derive the correlation function generalizing the matrix
method of [15] and its related observables. Section 3 contains the general discussion of
stability and its relation to the free energy of [15] on the Bethe lattice. In section 4 we apply
our stability criterion to the zero-external-field phase diagrangfor 2. We argue that both
first- and second-order transitions will appear o= 2. In section 5 we discuss the limit
g = 1. The recursion relation connected to the magnetization becomes identical to the logistic
equation. Consequences of the transition to chaotic behaviour of the latter foetiePotts
model are discussed. In section 6 we investigate the relation to a generalized percolation model
valid also forK < 0 andL # 0. In the conclusion (section 7) we summarize our results.

2. General recursion formula

We consider the-state Potts model on a Cayley tree of coordination humbdt can be
interpreted ag branches withR shells connected to an origin with shell numbes 0. At
each sitethere sitsaspin= 1, 2, . . ., g interacting with an external field which distinguishes
a fixed spin valué&. Two nearest-neighbour spiasando; contribute a ternk’s,, ., to the
Hamiltonian—g8H, i.e.

—BH = Kzaai,aj +ZLi80,-,6' (1)

{i,J) i

The first sum in equation (1) extends over all nearest-neighbouring(pgif the lattice. The
external fieldZ; appearing in the second sum is made up of two pdrts= L + (—=1)" L,
whereL denotes a constant magnetic field and the second term stands for a staggered field, its
sign alternating from one shell to the next. The partition sum can be written [22] as a product
of partition sumsTy(o) (see figure 1) of branches of lengkhsummed over the spim at the
origin

Zr(K, L) =) €% (To(0))". 2

The factorsly for the branches can be calculated recursively (see [22] and earlier work quoted
therein). One can parametrize the partition shiitv) for a branch starting at sheilby

T,(0) = a, (855 + X, (1 = 85.,5)). 3)
For the coefficients, anda, one finds (see figure 1) a recursion formula:
_ el + (e +q —2)(xu)* !
B A1(xn+1)

(4)

Xn
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w2~g ?@L®L®

Figure 2. Graphical representation of Boltzmann factors. The correlation®y, o,, r) are
obtained by summing over all spins except the external spirgdo,. The one-spin probability
w1 (op) is found by setting = 0.

ay = (an+1)* A1 (X041) (5)
with the abbreviation
Ar(x) = e+ (g = D 6)

Equations (4) and (5) allow the recursive computioff,pfor n < ng given the values,,, and

a,,- The solution of (3) and (4) with arbitrary values at the suriagce- R of the branches is
technically difficult. If the map (4) has a stable fixed point or a stable orbit of petiea can
choose Ik no « R. For large enoughg one can replace, with n < ng by the fixed point
anda, can be found as a function af,. Knowing T we can determin&y as a function of

K, L anda,,. The latter cannot be eliminated, since (5) is always unstable, i.e. sensitive to the
initial values. However, knowledge of, is not needed, if we want to calculate the Boltzmann
distribution or correlation functiomw, (o9, o,, r) for two spins residing at site 0 and a second
site at distance.

Two sites on a Cayley tree can be connected by a line, as illustrated in figure 2. The
constantsy, contained in the branches adjacent to the connecting line canegldoe to the
normalization conditior__ , wo(o, o) = 1. Assuming both sites are inside the shglive
can setr, in all T along the line equal to the fixed-point value. Thenis translation invariant
and independent of the sizg of the subsystem. Its behaviour is the same on an infinitely
extended tree or Cayley tree. Putting the distancerno r = 0 we obtain the Boltzmann
distribution for spino

1
wi(o) = Z—Re”wTR(o))z

eL(Sa.c_r + XZ(l - 80,&)

= 7
Az(x) @
with the function
Ax(x) = €" + (g — Dx*. ®)
An observable related to the Bolzmann distribution (7) is the magnetization
_ 1
mx) = —1— (wl(cr) - —) : 9)
qg—1 q
Inserting the form (7) we find
el —x?
m(x) = . 10
(x) e (10)

Theg-dependent normalization in (9) is chosen conventionally [1] in order that the/:gase3
orm = 1 correspond to a disorderéd = 1) resp. a fully ordered spin state on the lattice
(x = 0). Moreover, (10) can be extrapolatedgte= 1 with a nontrivial result.
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The two-point functionw, for a fixed point of (4) can be obtained by the matrix method
of [15]. This formalism can be generalized to the case of an arbibf periodr = 2. The
fixed-point case can be recovered by settihg= x_ = x. The result of a rather tedious and
lengthy calculation ofv, is

(1 — m(x0))x,

w2(00, 07, ) = wi(oo)wi(o,) + T[SJ_(Um o) (ex,7)
+(1+(q — Dm(x,))S) (00, o) (€], )] (11)
with
(e(xs)e(x_))/? r even
r = 12
«n { (eGP 2e(x,)  rodd (12)
and the spin factors
S (U s Gr‘) = ( 80 o 1)( 60,.,& - 1) 13
1(@0 2t — 1) e q (13)
1
S1(00,0,) = q_—l(l — 860.5) (1 = 86,.5)((¢ — D)doy0, — 1). (14)
The form ofT" shows that the correlations decay exponentially with the decay constants
eL(x) =x" 2" — 1)/A1(x) (15)
and
(g —DA—x)
EH()C)=€L(X) (1+T) (16)

The same formulae (11)—(16) hold also for a fixed-point solution with: x_. The first term

in (11) corresponds to the unconnected part, the second to correlations if both spins have no
a-component only relevant far > 2 and the third contributes to correlations, if both points
have spins equal t6. The connected two-point function in the same normalization as the
magnetization (9) is given by

ws = %—(wz — wi(o0)w1(0,)). an
q

For phase transitions correlations are important where at least one of the gpirihis other
spin may be equal or not equal & These two cases we index hyr) = +1. For those
correlations the spin factors reducep= A(r)(¢ — 1)/¢ andS, = 0. Insertingw, from
(11) into (17) we find

AXo

wy(, r) = — (L =m(x0) (1 +(g — Hm(x)I (e, r). (18)

qx;
The choicer(r) = 1 corresponds to ferromagnetic ang) = (—)" to antiferromagnetic
correlations. Asn, w§ from (18) can also be extrapolatedgo= 1 with a nontrivial result.
Since for a period 2 orbit solution of (4) adjacent shells have magnetization), we define
the averagerfo) and and the staggerea ) magnetizations by

mo,; = 2(m(xs) £m(x_)). (19)

An observable related to (18) is the susceptibility. Eveh,at 0 there exist four possibilities.
Since susceptibilities are sums owgjhaving only one decay parametgr there are only two
independent possibilities for which we take the average susceptibility

Xo= Y ws(L |r|) (20)
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and the staggered susceptibility
X =Y ws((=D", |r)) (21)

where the sum comprises all sites aridlenotes the distance of the two poings differs from

the normal susceptibilityo, that at pointg with odd| j| the antiferromagnetic correlation has

to be taken. Itis easy to check that, satisfy the relatioryo ; = dm(x+)/9Los|L,,~0. Where

L, denotes a staggered external field. The recursion relation analogous to (4) in the presence
of L, can be derived, and by expansion around= 0 the derivatives with respect to, at

L, = 0 can be computed. The reason for considegings the behaviour at critical points.

Since the number of points in distanceill increase with(z — 1)", the susceptibility (20), (21)

will diverge if |e.e_| = (z — 1)~2 provided alll'; > 0. If ¢; becomes negative (fa < 0)

Xs is the sum of positive quantities and will exhibit a divergence, wheggasmains finite.

We notice that by choosing an appropriate) we can always achiewe5 > 0 forr > 0.

3. Stability and free energy

Any observable computed from the functions, in a regionn < ng is the same as for an
infinitely extended Bethe lattice. The recursion formula (4) must have a stable orbit of length
Txf(t =1,..., 1) for obtaining these observables independent of the outside region,.
Stability occurs if

12

=1 xt+1

D= <1 (22)

holds [25]. In the following we restrict for simplicity the discussion to the case of a fixed point
in which (22) reads as

DK. L) = | <1 (23)

Xn+l

Xp+1=X

In all previous publications this stability condition has been simply ignored. A problem arises
if the recursion formula (4) allows more than one solution with< 1. Adopting our method

the true boundary conditions at the surface of the Cayley tree=atR decide which of the
possible states are presentat= no. States with differenk may have different basins of
attraction in the space of the boudary values at R. Therefore, phase transitions occur
either atD(K, L) = 1 or at values oK, L where the solutions of (4) are no longer real. This

is, in general, at variance with the standard method adopted from finite-dimensional lattices (an
example is given in section 4). One has to determine fratme free energy per poirflz (m) as

a function ofm describing the system on the Bethe lattice. The zero-field solutions correspond
to minima of fz (m). Only the global minimum is stable, all others are metastable. Criticality

is given by fg(m(x1)) = fp(m(x2)). Those obtained by (K, L) = 1 or Im(x) = 0 would

be interpreted as spinodal points. In the following we show that this method can be questioned
due to the dependence on the boundary conditions. The method to caltulatehas been

given in [23]. For the logarithm of the partition function per paint we have two conditions:

a -

_8023 = w]_(U) (24)
8&)3 Z

W = E EU wz(o, g, 1) (25)
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The factorz/2 in front of the energy per point (25) accounts for the ratio of the number of
bonds to sites on a Bethe lattice. As in the= 2 case [5] the differential equations (24) and
(25) can be integrated with the result

wp = % In i;—g; +1n An(x). (26)
The functionsA; »(x) are given in (6) and (8). To obtaing within our recursion formalism
we solve (5) fom < ng > 1

Ina, = (z — 1° " In(a,, Ay ) @7)
and obtain fow = (z/N (n9)) Inag
w=(z—-2Ina,+InA;j. (28)

With the nontrivial valuen,f0 = A;/A, we achieve equality ob andwp. By a Legendre
transformation [22] one obtaing (K, m) from wp (K, L). A stability criterion based orf
assumes thdt inside the shelty can be varied freely. This implies also a change,gf Since
ay, is connected to the true boundary values at R by

N(R) (

N @y, = ——

R
N(no) In ag + Z (z — 1)v—l—R In Al(xu)> (29)

v=np+1

we encounter a fine-tuning problem f8§KR) > N (ng). Small changes ing or xg willchange

ay, by large amounts. Therefore stability of the whole Cayley tree has to be considered. Starting
from arbitrary valueay andxy atthe surface a stable fixed point guarantees stable observables
(24) and (25). This means th#t describes the observables in thermal equilibrium, but should
not be used to rule out possible stable fixed points of recursion (4). In [22] a proposal to
computefp independently ofix andxy has been given without proof. The instability with
respect to surface will make it difficult to prove this prescription.

4. Phases forg > 2 at zero field

If the external fieldL vanishes, the recursion relation (4) can be solved at least qualitatively.
The fixed points are the zeros of the following function:
1+(X +g —2)xt

R(x) = & +(q — Dail X (30)
which is depicted in the case= g = 3 in figure 3 for various values €. R(x) behaves
similarily for all z, ¢ > 2. A fixed point is stable according to (23),Af has a negative slope
no smaller thar-2. The function (30) has always the zero= 1, which corresponds to the
disordered phase. The fixed point= 1 is stable in the range

|n<1—€>=1<;<1<<1<c=|n<1+ q ) (31)
Z

7—2
The upper limitk . agrees with the Bethe—Peierls temperature obtainable by loop expansion[3].
At negative and small positive values Kf only the solutiony; = 1 exists. Above a critical
K a pair of two further solutions, ; appear (see figure 3). The solutiopwith x, < 1
satisfiesD(xy) < 1 and is therefore stable for &l > K. The other solutionz with x3 > 1
has negative magnetization and is stable abvewhere the disordered solution becomes
unstable. AboveK! two possible states always exist. The boundary values decide which of
the two is adopted on the lattice. In the case ef 3 the value ofK is given by

K" =In (1 + 2\/ﬁ) <K.. (32)
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Figure 3. FunctionR (x) for z = 3 given by (30) as function of for L = 0 and variousk. Solid
curves are foK > K/, dashed curves fak < K. Stable fixed points correspond to zeros with
negative slope.

The transition atk is of first order sincen(x2(K”)) # 0. Below the Bethe—Peierls
temperature AK. a negatively magnetized phasgx3) < O replaces the disordered phase.
This transitiony; <> x3 is of second order sincg(K,.) = 1 holds. Expanding the fixed point
x(K, L) of (4) around the valueK = K. andL = 0 up to ordeK — K.), L we find for the
magnetization as a function &f

2(z —2)q(K — K.)

m(K)lmo = = =5 (33)

and as a function of.

2gL
m(L)|g—x, = —‘1\/ 1 (34)

N @-2De-2@-1)
Taking the derivative ofz with respect ta. we get the zero-field susceptibility neky.

2
—}< q >|K—KC|‘1. (35)

=0 Z\z—2

x(K) = o=

From equations (33)—(35) we read off the critical indiges= 1,§ = 2 andy = 1. Note
that L has to be positive nedf,, otherwise no fixed point will exist. In the antiferromagnetic
caseK < O there exists no positive fixed point besidgs= 1. If we decreas& below K
the iterated recursion formula exhibits a stable arhitof lengtht = 2 corresponding to an
antiferromagnetic ordering, since the magnetization alternates from shell to shell. This can
occur only for 2< ¢ < z. The critical pointkK, has been found already in [15].

The Ising casey = 2 is exceptional due to its global symmetry, which states that any
two fixed pointsy, satisfyx.x_ = 1. This implies the relatiok” = K. = |K/| and that



936 F Wagner et al

the antiferromagnetic magnetizationskat< — K. can be obtained from the opposite equal
magnetizations ak > K.. In the special case= 3 we get

1 [elkl —3
mi:il—Ze—lK‘ ekl +1° (36)

For K > K. equation (36) gives the two possible magnetizations an&fer K. = —K.
the magnetization of adjacent shells. An expansion analogue to equations (33)—(35) yields
the values = % y = 1 ands = 3. These mean-field indices are expected from an infinite-
dimensional lattice as the Bethe lattice.

In contrast we encounter fgr> 2 second-order transitions at the Bethe—Peierls goint
with percolation indices and &, with mean-field indices. In addition afirst-order transition at
K! < K, occurs. Investigating the stability of the system by the free energy, one would obtain
only a first-order transition &k < Kz < K., where fz(x1, Kg) = fp(x2, Kp) holds [15].
The staters would be metastable arki/, K. would correspond to spinodal points.

5. Logistic equation

The recursion formula (4) can be extrapolated te 1 without leading to a trivial resultn
andwg from (10) and (18) remain nonzero. Due to the normalization factor in (9) and (18) the
limit ¢ — 1 is equivalent to taking /dq A(gq)|,=1 for an observablel. For K > 0 [24] this

limit corresponds to bond percolation with a probability= 1 — e X. At least for the Bethe
lattice withz = 3 we can interpret the — 1 limit by another model valid for alk and L,
namely the logistic equation. The recursion formula (4) reads in this case as

Xy = €K —efu(x,)it @37
with the parameter

u=eXe* -1et. (38)
Performing for; = 3 a linear transformation

=1 (2+(VIT A —1)ey,) (39)
we obtain fory, the logistic equation

Yn = ryn+1(1 — yu1) (40)
with the control parameter

r=1+1+4. (41)

Therefore, we found a correspondence between the thermal equilibrium properties of the
Pott's model on af = 3)-Bethe lattice and the logistic equation. The thermal distributions
depend on the boundary condition and this dependence is described by the logistic equation.
Equation (40) has been studied extensively in the literature [25]. We notice a universal property
that the control parameterdepends only on the combinatianbut not onkK or L separately.
Systems at constanthave the same type of solutionsmust satisfy the inequality > —%1,
otherwise (37) has only chaotic solutions, which meanfor anyn > 1 is sensitive to the
boundary conditionrg. Since for the control parameter in (41)- 1 holds, the trivial fixed
pointy = 0 of (40) is always unstable. Inthe range:lr < 3or—1 < 4u < 3 corresponding
to the range (31) at = 0 we encounter the stable fixed point

—K

x:ez—(ﬂ—l). (42)

u
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From the general formula (18) for the correlation function we ohigim the fixed-point case:
wS(h, r) = hebx® (%(1 _JVi+ 4u))r . (43)

The signs in (43) fon. = 1 exhibit for K < 0 oru > 0 an antiferromagnetic ordering.
Increasing the value ma‘beyond?1 (inthe antiferromagnetic region) a series of period doubling
occurs, followed by a region of deterministic chaos. Abave- 2 only chaotic solutions
remain. The solutions corresponding to & 2 orbit read

X = % (1j: «/4u——3> . (44)

According to (22) this orbit is stable in the range<34u < 5. Note that negative are not
excluded by positivity ofv; (o) in the limitg — 1. For the correlation function we find from
(18)

ws(A, r) = A(—=1)" (xaoxm)g'/2 e l@d—u'? (45)

wherew; denote the type of the sités= 0, ». Despite the formal appearancel — u the
function (45) is analytic at = 1. For?1 < u < 1 one observes the same antiferromagnetic
ordering as in (43) foK < 0. Inthe range 1< u < % we find a period doubling of the

sign pattern. The transition point= 1 implies a superstable cycle of the logistic equation.

At u = 1 all correlation vanish and the system disintegrates into uncorrelated shells of spins
with magnetizationn(x_) = 1 at odd points ang:(x.) = 1 — exp(—L)x? at even points. At

L = 0 the ratio ¥x, of expectation value§, ;) and (1 — §, 5) taken on a branch is equal

to the golden mean value/4, = (/5 — 1)/2 indicating maximal disorder. In both cases,

T = 1, 2, the decay of the correlations is a functiorwodnly, whereas the amplitudes of,
depends on botl andL.

From the properties of the recursion formula (37) or the equivalent logistic equation (40)
we get the phase diagram of the Potts model extrapolatec=d in theK, L-plane. This is
depicted in figure 4 for the cage= 3.

Thelinesu = —‘—11 andu = 2 separate the chaotic regimes- 2 andu < —;11 from regions
with a possible stable orbit. For ferromagnetic coupligg > 0) aboveu = —;11 we have
always the fixed-point solution given by (47) with£ 0 except the lind. = 0, wherem = 0
only for K < K, holds. The lineL = 0 touches: = —%1 atK = K. = In2. Therefore, we
have a second-order transition which can be identified with the transition of bond percolation.
The critical indicess = 1,y = 1 andé = 2 we have derived already in the general case.
The connection to percolation we postpone to the last section. For antiferromagnetic coupling
(K < 0) we find the linex = % separating the fixed-point solution from the= 2 orbit. The
lineu = 3 intersects thé = 0 axis atk. = — In 3. The transition ak_ is more complicated,
since one has to distinguish average and staggered magnetizgtioimom equation (19).
Inserting (44) into (19) we find nedf,

no ~ K: —K (46)
mg ~ /K. — K (47)

which implies critical indiceg, = 1, resp.8, = % By expanding the = 2 solution with
a staggered field., we havemol, —o k—x: ~ LY% with 8o = 1, andmy| o xk—x: ~ Li’*
with §; = 3. Likewise we obtain fronyg; = Bm(x+)/8Lo,$}L:0 ~ (K. — K)~7 the indices
o = 0 andy, = 1 in agreement with the scaling relatignis — 1) = y. Occurence of two
order parametergg, at K = K. means a crossover phenomenon. Approact&idn the

K, L-plane atL; = 0, mq is the relevant order parameter with indigis yo and approaching
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fixed point

0.5k

©
o

tanh(L/2)

-0.5

-1.0

1 —exp(—K)

Figure 4. Phase diagram @f = 1 Potts model in the plane oflexp(— K ) and tanliL /2). Above
the solid curves = f% andu = % we have a phase descibed by a fixed point. Between the latter

and the dashed curve= 2 there exists a period 2 solution with a superstable cycle (dotted curve)
atu = 1. Period doublings happen betweer= % andu = uy = 1.401 (dashed-dotted curve).

The region of deterministic chaos lies betwees 1, andu = 2. Belowu = 2 andu = —;11 the
observables depend sensitively on their values at the surface (chaos).

K!intheK, L,-plane atL = 0, m, is relevant with indiceg,, ;. In contrast tak ., the point

(L =0, K)) corresponds to a multicritical point. Aboue= ;51 ther = 2 orbitis to be replaced
by ar = 4 orbit. Further period doublings occur in the regior: u,, = 1.4011551. In the
region of deterministic chaas,, < u < 2 stable orbits are surrounded by chaotic solutions.
We used; = 3 since it allows explicit calculation af, andx. We expect a similar pattern [26]
forall oddz, since the Feigenbaum route to chaos depends only on the property of the recursion
formula (37): that its right-hand side has a single maximum-=2t0. For every the extremal
valuex = 0 corresponds to a saddle point. We found numerically that fer4, 6, 8 apart
from the period 2 solution no further period doubling occurs. Comparison of the casés
andz = 4 is given in figure 5. The rich structure observedfct 5 in x as function ofu at

L =0isabsentin = 4.

6. Cluster interpretation

In the previous section we learned that the= 1 limit of the Potts model and the logistic
equation are connected by the fact that the latter describes the mean-field equation for the
equilibrium properties of the Potts model. Conventionally [9]4he 1 ferromagnetic Potts
model is interpreted as bond percolation. In this section we wish to investigate to what extent
the more interesting antiferromagnetic cé&e< 0) and percolation are related.

Any observable in the Potts model can be obtained from the two-point correlefiorhe
bridge to percolation is the interpretationof from equations (43) and (45) as the probability
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1
4

0.2 0.4 0.6 \

Figure 5. Fixed points and orbits as function of @xpK ) (exp(—K) — 1) for z = 5 (left) andz = 4
(right).

that the origin and a point at distaneeare in the same clustew$ > 0 can be achieved

for r > 0 by selectingh(r). We have to find a more general percolation as the usual bond
percolation, sincevs(x, r) depends on two parametets §ndux) and distinguishes between
odd and even origingo. In addition,w5(x, r) may violate 0< w5(x, 0) < 1. As observed

by Leads [27] bond percolation is equivalent to a cluster-growth model, where from a starting
point further links are added with probabilityand rejected with probability+ p. Today this
algorithm is known as the Wolff algorithm [28}w5(A, 1) < 1 in all cases suggests that we
should start in a generalized growth model with a link instead of a site. This link is chosen with
probability p; and enlarged to a cluster by the following algorithm. Each site of a link will be
continued ta — 1 further links with probabilityp; withi = 1, ..., z. If we label the sites of

an AB-lattice as the Bethe lattice with= +1 corresponding to a possible antiferromagnetic
order, these probabilities; , may depend on the typeof the site. Continuing this procedure

we construct a cluster, which can be characterizedzhyy equal to the number of sites of
type« connected t@ neighbouring sites. Using the geometry of a Bethe latligg can be
expressed by the other. In the case 3 there are two relations

El,a - 2E3,7oz - E3,a + EZ,fa - E2,a +1 (48)

Figure 6 gives an example far= 3 with E,_ = 2, E3. = 1 andE3;_ = E». = 0. It occurs
with probabilitprpiplfpg,p3+. A general cluster with numbes; , may begin on either
site with typeqag of the first link. Its probability under the condition of presence of the first
link is given by

Wao(EIL) = g(E) [ [(pia) ™ (49)

whereg(E) denotes the combinatorial number of different clusters with given nuber
The probabilityw,, for any cluster

Wap = ) Wag(E|L) (50)
E

needs notbe 1. In analogy to the Bolzmann distribution for a tree as in section 2, the probability
Wy, Satisfies a recursion formula. For a growth model with period 2 we get

W_gy = Plag + 2p2,aowao + p3.a0w50- (51)

Solving the two equations (51) fap,,(p) and expandingw,, in powers of p; , the
combinatorical factog (E) in equation (49) can be determined. The explicit formugfp) is
not needed if we are interested only in the correlation function, which is the probability that
one site (origin) at the starting link appearing with probabifityis connected (see figure 6)
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o
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@
o

2+ p3— p2+ r

Figure 6. The left part gives an example for a cluster growing from the linkThe right part
shows the graph for correlations between an origin 0 and a point in distaad& Squares denote
any possible contuation &z, points occurring with probability ..

by r — 1 further links to a site in distange The probabilityp, for such links connecting a
site of type—a with a neighbour of type is given by

Pa = P2,a + P3oaWq- (52)

Multiplying all probabilities we find the correlation function connecting 0 with a point at
distancer, as in figure 6,

2
W Po r>0 even
W_g rodd.

Ta(r) = wa - pr - { (=)

[N
-

(53)

N‘

(p+0-)

Note thatI',(0) is neither defined nor needed. We can consiggmw, as independent
parameters and do not need to perform the elimination of equations (51), (52). In the case of
a-independent probabilities; , = p;, equations (51) and (52) can be solved leading to

p=3 (1 — VA -2pp)? - 4P1P3> (54)
1
w=—(p— p2). (55)
pP3
In this case (53) can be extrapolated-te: 0 by introducingpg as
1
P
being the probability for the presence of a single point which leads to the simple formula
I'(r)=po-p". (57)

Due to the constraint (48) the relation between andg,, w, is not unique. In addition,
the link probability p, in equation (53) ompg in equation (57) is a free parameter. A model
with greatly reduced freedom ¢f , is thea-independent bond percolation, where the growth
parameterg; are given in terms of a link probability; through

pr=0A—-p)®  ps=p;  pi=pips. (58)
Inserting equation (58) into equations (54)—(56) we findfpr< %
0 = pL w:po=1 (59)
and forp, > 3
1—pr\? 1-p.\°
pL pL

This shows the percolation phase transitiorpat= % In the growth model we avoid the

notion of an ‘infinite’ cluster forp, > % by the probabilitypy < 1, that a point belongs to
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a cluster at all. Comparing equation (53) with the correlation funcii§, r) of the Potts
model equation (45) in the fixed-point regime we can identify

po = BPel=1-m (61)
p=|6|=%‘«/‘4u+1_1‘. (62)

Both, percolation and the Potts model have in common that the decay parartresy.p) of

the correlation function and the magnetization In (resp. the point probabilityg) can be
chosen independently. At = 0 we have in both cases only one free parameter. Using the
bond percolation parametrization (58) fgrand expressing in terms of e X we find the link
probability

pr=1le X -1 (63)
o1 1 K. <K <K,
Po=a"= 27 M= ek _1)-3 K > K..

The critical pointsp;, = % correspond tX = K., K. Whereas for ferromagnetic coupling

(K > 0) K, is inside the validity of the fixed-point regime, the antiferromagnetic transition
K| is located at the border. This is due to the change of a fixed-point solution into an orbit
7 = 2 solution. ForK < K/ we have to compare the general formula (45)ig(«, ) with

' from the percolation model (53). Identification of the decay parameter leads to

pu=cu=}[1+av/Au—73. (65)

Since the amplitude involves the link probabilipy which can be no longer eliminated with
an argument leading to (56), we can compare only the ratios

(64)

Wy €q Xo
== | (66)
From the value ofv5(c, 1) we find
ek \?
wiw-_pr = (1— M)Z (T) . (67)

Any cluster-growth model with (65) for the decay parameter and (66), (67)f@nd p, will
have the same correlation function as ¢he 1 Potts model withy = 3 in the period 2 phase.

In particular, the ratigx_|/x. of the period 2 solution of the logistic equation appears to be
the ratiow_ /w, of having a cluster starting at a point of type= +1.

7. Conclusions

The thermodynamic properties of thestate Potts model on a Bethe lattice can be exactly
calculated by mean-field methods. The parametgranda, (magnetization and partition
sum of a branch) can be determined recursively from the valyesy at the surface. The
formula for x,, relevant for local correlations expressediby may have a stable fixed point
or orbit. This means thab, is insensitive to the boundary conditions for sufficiently large
distances from the surface. In contrast,relevant for global quantities as the free energy
and its derivatives is always sensitivestp andag. This reflects the difficulty to obtain the
Bethe lattice by extrapolating Cayley trees to large sizes, since the influence of the surface
points and the transition region (if is not exactly at the fixed point) cannot be neglected. A
natural way to treat the Bethe lattice is to consider a sublattiag sifiells, where the distance
R-ng is large enough that, can be replaced by a fixed point. Generalizing the method of
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Baxter [5] to anyy a free energy for this subsystem can be found [23] from the magnetization
and the energy/bound insigdg. However, due to surface instabilities this function should not

be used to reject fixed points on the basis of its value. Instead one should use the stability
of the fixed point or the orbit. Applying this criterion to the zero-external-field case we find
for ¢ > 2 and ferromagnetic coupling a first-order transition and a second-order transition at
the Bethe—Peierls temperature with critical indices of the percolation class. The transition to
antiferromagnetic ordering at negative coupling is also of second order, but with indices of
the mean-field class. The Ising cage= 2 is exceptional, since its ferromagnetic transition

at K. and its antiferromagnetic transition & = —K, are related and are both of second
order with mean-field indices. Of particular interest is the extrapolatign=ol. In the case

of z = 3 the recursion relation for, is identical to the logistic equation. This equivalence
holds for anyK and L, whereas the usually discussed equivalence with bond percolation is
only valid for K > 0 andL = 0. For antiferromagnetic coupling < 0 we encounter in

the phase diagram the rich structure of the logistic equation (sequence of period doubling,
supercycles, deterministic chaos). We found that the first period doublihg=atO of the
logistic equation corresponds in the= 1 Potts model to a multicritical poirkt’,, where two
second-order transitions exhibit a crossover: one with critical indices of the mean-field class
and a second with indices= g = 1 andy = 0. The first superstable cycle of the logistic
equation corresponds to a situation where uncorrelated spins are antiferromagnetically ordered
in shells. One shell has magnetizatian = 1 and the neighbouring shell a value related

to the golden mean. By a Feigenbaum-type argument a similar pattern should arise for any odd
z. On the Bethe lattice one can generalize bond percolation to a cluster-growth model, which
can be interpreted by thg & 1)-Potts model also fok # 0 andK < K. Since the latter is

also related to the logistic equation, the cluster-growth model may serve as a dynamical model
for applications of the logistic equation in economical problems [29].
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