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Abstract. The q-state Potts model on a Cayley tree can be solved by a recursion formula
depending on the properties at the surface. The model on a Bethe lattice is obtained by extrapolating
the interior of a Cayley tree sufficiently far from the surface in order to have a stable fixed point of
the recursion. Forq > 2 we find a second-order transition of percolation type at the Bethe–Peierls
temperature and a first-order transition at a higher temperature. For coordination numberz = 3 the
recursion extrapolated toq = 1 is identical to the logistic equation. The Feigenbaum route to chaos
appears for antiferromagnetic coupling of the Potts model. The first period doubling corresponds
to a multicritical point in the phase diagram of the Potts model.

1. Introduction

Theq-state Potts model [1,2] ought to be solvable on a Cayley tree with coordination numberz,
since loop expansion of zero order [3] or mean field should be exact on an infinite-dimensional
lattice. However, one has to distinguish [4, 5] between a large finite Cayley tree and the
interior of an infinitely extended tree, also called a Bethe lattice. Extrapolation of the former is
nontrivial, since the surface of a Cayley tree cannot be neglected. One interesting aspect of this
model is that it can serve as a testing ground for properties of phase transitions. Zero-order loop
expansion or Bethe–Peierls approximation [3] yield a second-order phase transition [6–10] at
the inverse Bethe–Peierls temperatureKc = ln(1 + q/(z − 2)) for all q and z > 2. In
contrast, one obtains at a temperature above1

Kc
, by applying Landau theory [11, 12], a first-

order transition forq > 2. The claim of [13, 14] for unusual transitions in the Ising case
q = 2 contributed additional confusion. A partial answer to this contradiction has been given
by Peruggiet al [15], who calculated the free energy per site recursively on a Bethe lattice.
They found forq > 2 a first-order transition above the Bethe–Peierls temperature.Kc itself
turned out to be the endpoint of spinodal curves due to metastable states (see also [16]). The
unusual transitions mentioned above are due to the dominance of surface sites. Those models
and possible generalizations [17–21] may be interesting, but are not related to the Bethe lattice.
The work of Peruggiet al [15] leaves open the question of how to obtain these results from the
extrapolation of a Cayley tree. In a first attempt Gujrati [22] derived a recursion formalism valid
for a Cayley tree of arbitrary magnitude. Similar methods were applied later in [23]. Using
only fixed points the results of [15] have been confirmed, but the stability of the recursion has
not been discussed. One of the aims of this paper is to use this stability to distinguish different
phases. Another interesting point of the Potts model lies in considering its thermodynamic
functions as analytic functions of the numberq of states. Valuesq 6 1 yield the connection of
various models to statistical physics [1]. Extrapolation toq = 1 in the zero-field case (L = 0)
for ferromagnetic coupling(K > 0) is usually interpreted as bond percolation [24]. The
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Figure 1. The left part gives the decomposition of the Cayley tree intoz branches connected to
an origin with spinσ and shell indexn = 0. The right part illustrates the recursion relation to
compute a branch starting at shelln from those starting atn + 1. Both figures are examples of the
coordination numberz = 3.

question remains, however, of how theq = 1 limit is to be interpreted forL 6= 0, especially
in the case of antiferromagnetic couplingK < 0.

This paper is organized in the following way. In section 2 we sketch the recursion
formalism of Gujrati [22]. We also derive the correlation function generalizing the matrix
method of [15] and its related observables. Section 3 contains the general discussion of
stability and its relation to the free energy of [15] on the Bethe lattice. In section 4 we apply
our stability criterion to the zero-external-field phase diagram forq > 2. We argue that both
first- and second-order transitions will appear forq > 2. In section 5 we discuss the limit
q = 1. The recursion relation connected to the magnetization becomes identical to the logistic
equation. Consequences of the transition to chaotic behaviour of the latter for theq = 1 Potts
model are discussed. In section 6 we investigate the relation to a generalized percolation model
valid also forK < 0 andL 6= 0. In the conclusion (section 7) we summarize our results.

2. General recursion formula

We consider theq-state Potts model on a Cayley tree of coordination numberz. It can be
interpreted asz branches withR shells connected to an origin with shell numbern = 0. At
each site there sits a spinσi = 1, 2, . . . , q interacting with an external field which distinguishes
a fixed spin valuēσ . Two nearest-neighbour spinsσi andσj contribute a termKδσi,σj to the
Hamiltonian−βH , i.e.

−βH = K
∑
〈i,j〉

δσi ,σj +
∑
i

Liδσi ,σ̄ . (1)

The first sum in equation (1) extends over all nearest-neighbouring pairs〈ij〉 of the lattice. The
external fieldLi appearing in the second sum is made up of two parts:Li = L + (−1)n(i)Ls ,
whereL denotes a constant magnetic field and the second term stands for a staggered field, its
sign alternating from one shell to the next. The partition sum can be written [22] as a product
of partition sumsT0(σ ) (see figure 1) of branches of lengthR summed over the spinσ at the
origin

ZR(K,L) =
∑
σ

eLδσ,σ̄ (T0(σ ))
z. (2)

The factorsT0 for the branches can be calculated recursively (see [22] and earlier work quoted
therein). One can parametrize the partition sumTn(σ ) for a branch starting at shelln by

Tn(σ ) = an(δσ,σ̄ + xn(1− δσ,σ̄ )). (3)

For the coefficientsxn andan one finds (see figure 1) a recursion formula:

xn = eL + (eK + q − 2)(xn+1)
z−1

A1(xn+1)
(4)
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Figure 2. Graphical representation of Boltzmann factors. The correlationsw2(σ0, σr , r) are
obtained by summing over all spins except the external spinsσ0 andσr . The one-spin probability
w1(σ0) is found by settingr = 0.

an = (an+1)
z−1A1(xn+1) (5)

with the abbreviation

A1(x) = eK+L + (q − 1)xz−1. (6)

Equations (4) and (5) allow the recursive compution ofTn for n < n0 given the valuesxn0 and
an0. The solution of (3) and (4) with arbitrary values at the surfacen0 = R of the branches is
technically difficult. If the map (4) has a stable fixed point or a stable orbit of periodτ , we can
choose 1� n0 � R. For large enoughn0 one can replacexn with n < n0 by the fixed point
andan can be found as a function ofan0. KnowingT we can determineZR as a function of
K,L andan0. The latter cannot be eliminated, since (5) is always unstable, i.e. sensitive to the
initial values. However, knowledge ofan0 is not needed, if we want to calculate the Boltzmann
distribution or correlation functionw2(σ0, σr , r) for two spins residing at site 0 and a second
site at distancer.

Two sites on a Cayley tree can be connected by a line, as illustrated in figure 2. The
constantsan contained in the branches adjacent to the connecting line cancel inw2 due to the
normalization condition

∑
σ,σ ′ w2(σ, σ

′) = 1. Assuming both sites are inside the shelln0 we
can setxn in all T along the line equal to the fixed-point value. Thenw2 is translation invariant
and independent of the sizen0 of the subsystem. Its behaviour is the same on an infinitely
extended tree or Cayley tree. Putting the distance inw2 to r = 0 we obtain the Boltzmann
distribution for spinσ

w1(σ ) = 1

ZR
eLδσ,σ̄ (TR(σ ))

z

= eLδσ,σ̄ + xz(1− δσ,σ̄ )
A2(x)

(7)

with the function

A2(x) = eL + (q − 1)xz. (8)

An observable related to the Bolzmann distribution (7) is the magnetization

m(x) = q

q − 1

(
w1(σ̄ )− 1

q

)
. (9)

Inserting the form (7) we find

m(x) = eL − xz
A2(x)

. (10)

Theq-dependent normalization in (9) is chosen conventionally [1] in order that the casesm = 0
or m = 1 correspond to a disordered(x = 1) resp. a fully ordered spin state on the lattice
(x = 0). Moreover, (10) can be extrapolated toq = 1 with a nontrivial result.
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The two-point functionw2 for a fixed point of (4) can be obtained by the matrix method
of [15]. This formalism can be generalized to the case of an orbitx± of periodτ = 2. The
fixed-point case can be recovered by settingx+ = x− = x. The result of a rather tedious and
lengthy calculation ofw2 is

w2(σ0, σr , r) = w1(σ0)w1(σr) +
(1−m(x0))xr

qx0
[S⊥(σ0, σr)0(ε⊥, r)

+(1 + (q − 1)m(xr))S‖(σ0, σr)0(ε‖, r)] (11)

with

0(ε, r) =
{
(ε(x+)ε(x−))r/2 r even
(ε(x+)ε(x−))(r−1)/2ε(xr) r odd

(12)

and the spin factors

S‖(σ0, σr) = 1

q(q − 1)
(qδσ0,σ̄ − 1)(qδσr ,σ̄ − 1) (13)

S⊥(σ0, σr) = 1

q − 1
(1− δσ0,σ̄ )(1− δσr ,σ̄ )((q − 1)δσ0,σr − 1). (14)

The form of0 shows that the correlations decay exponentially with the decay constants

ε⊥(x) = xz−2(eK − 1)/A1(x) (15)

and

ε‖(x) = ε⊥(x)
(

1 +
(q − 1)(1− x)

eK − 1

)
. (16)

The same formulae (11)–(16) hold also for a fixed-point solution withx+ = x−. The first term
in (11) corresponds to the unconnected part, the second to correlations if both spins have no
σ̄ -component only relevant forq > 2 and the third contributes to correlations, if both points
have spins equal tōσ . The connected two-point function in the same normalization as the
magnetization (9) is given by

wc2 =
q

q − 1
(w2 − w1(σ0)w1(σr)). (17)

For phase transitions correlations are important where at least one of the spins isσ̄ . The other
spin may be equal or not equal toσ̄ . These two cases we index byλ(r) = ±1. For those
correlations the spin factors reduce toS‖ = λ(r)(q − 1)/q andS⊥ = 0. Insertingw2 from
(11) into (17) we find

wc2(λ, r) =
λx0

qxr
(1−m(x0))(1 + (q − 1)m(xr))0(ε‖, r). (18)

The choiceλ(r) = 1 corresponds to ferromagnetic andλ(r) = (−)r to antiferromagnetic
correlations. Asm, wc2 from (18) can also be extrapolated toq = 1 with a nontrivial result.
Since for a period 2 orbit solution of (4) adjacent shells have magnetizationm(x±), we define
the average (m0) and and the staggered (ms) magnetizations by

m0,s = 1
2(m(x+)±m(x−)). (19)

An observable related to (18) is the susceptibility. Even atLs = 0 there exist four possibilities.
Since susceptibilities are sums overwc2 having only one decay parameterε‖, there are only two
independent possibilities for which we take the average susceptibility

χ0 =
∑
r

wc2(1, |r|) (20)
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and the staggered susceptibility

χs =
∑
r

wc2((−1)|r|, |r|) (21)

where the sum comprises all sites and|r| denotes the distance of the two points.χs differs from
the normal susceptibilityχ0, that at pointsj with odd|j | the antiferromagnetic correlation has
to be taken. It is easy to check thatχ0,s satisfy the relationχ0,s = ∂m(x+)/∂L0,s |L0,s=0, where
Ls denotes a staggered external field. The recursion relation analogous to (4) in the presence
of Ls can be derived, and by expansion aroundLs = 0 the derivatives with respect toLs at
Ls = 0 can be computed. The reason for consideringχs is the behaviour at critical points.
Since the number of points in distancer will increase with(z−1)r , the susceptibility (20), (21)
will diverge if |ε+ε−| = (z − 1)−2 provided all0‖ > 0. If ε‖ becomes negative (forK < 0)
χs is the sum of positive quantities and will exhibit a divergence, whereasχ0 remains finite.
We notice that by choosing an appropriateλ(r) we can always achievewc2 > 0 for r > 0.

3. Stability and free energy

Any observable computed from the functionsw1,2 in a regionn < n0 is the same as for an
infinitely extended Bethe lattice. The recursion formula (4) must have a stable orbit of length
τ x∗t (t = 1, . . . , τ ) for obtaining these observables independent of the outside regionn > n0.
Stability occurs if

D =
∣∣∣∣ τ∏
t=1

∂x∗t
∂x∗t+1

∣∣∣∣ < 1 (22)

holds [25]. In the following we restrict for simplicity the discussion to the case of a fixed point
in which (22) reads as

D(K,L) =
∣∣∣∣∣ ∂xn∂xn+1

∣∣∣∣
xn+1=x

∣∣∣∣∣ < 1. (23)

In all previous publications this stability condition has been simply ignored. A problem arises
if the recursion formula (4) allows more than one solution withD < 1. Adopting our method
the true boundary conditions at the surface of the Cayley tree atn = R decide which of the
possible states are present atn = n0. States with differentx may have different basins of
attraction in the space of the boudary values atn = R. Therefore, phase transitions occur
either atD(K,L) = 1 or at values ofK,L where the solutions of (4) are no longer real. This
is, in general, at variance with the standard method adopted from finite-dimensional lattices (an
example is given in section 4). One has to determine fromZ the free energy per pointfB(m) as
a function ofm describing the system on the Bethe lattice. The zero-field solutions correspond
to minima offB(m). Only the global minimum is stable, all others are metastable. Criticality
is given byfB(m(x1)) = fB(m(x2)). Those obtained byD(K,L) = 1 or Im(x) = 0 would
be interpreted as spinodal points. In the following we show that this method can be questioned
due to the dependence on the boundary conditions. The method to calculatefB(m) has been
given in [23]. For the logarithm of the partition function per pointωB we have two conditions:

∂ωB

∂L
= w1(σ̄ ) (24)

∂ωB

∂K
= z

2

∑
σ

w2(σ, σ,1). (25)
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The factorz/2 in front of the energy per point (25) accounts for the ratio of the number of
bonds to sites on a Bethe lattice. As in theq = 2 case [5] the differential equations (24) and
(25) can be integrated with the result

ωB = z

2
ln
A1(x)

A2(x)
+ lnA2(x). (26)

The functionsA1,2(x) are given in (6) and (8). To obtainωB within our recursion formalism
we solve (5) forn < n0� 1

ln an = (z− 1)n0−n ln(an0A
1/(z−2)
1 ) (27)

and obtain forω = (z/N(n0)) ln a0

ω = (z− 2) ln an0 + lnA1. (28)

With the nontrivial valuea2
n0
= A1/A2 we achieve equality ofω andωB . By a Legendre

transformation [22] one obtainsfB(K,m) from ωB(K,L). A stability criterion based onfB
assumes thatL inside the shelln0 can be varied freely. This implies also a change ofan0. Since
an0 is connected to the true boundary values atn = R by

ln an0 =
N(R)

N(n0)

(
ln aR +

R∑
ν=n0+1

(z− 1)ν−1−R lnA1(xν)

)
(29)

we encounter a fine-tuning problem forN(R)� N(n0). Small changes inaR orxR will change
an0 by large amounts. Therefore stability of the whole Cayley tree has to be considered. Starting
from arbitrary valuesaR andxR at the surface a stable fixed point guarantees stable observables
(24) and (25). This means thatfB describes the observables in thermal equilibrium, but should
not be used to rule out possible stable fixed points of recursion (4). In [22] a proposal to
computefB independently ofaR andxR has been given without proof. The instability with
respect to surface will make it difficult to prove this prescription.

4. Phases forq > 2 at zero field

If the external fieldL vanishes, the recursion relation (4) can be solved at least qualitatively.
The fixed points are the zeros of the following function:

R(x) = 1 + (eK + q − 2)xz−1

eK + (q − 1)xz−1
− x (30)

which is depicted in the casez = q = 3 in figure 3 for various values ofK. R(x) behaves
similarily for all z, q > 2. A fixed point is stable according to (23), ifR has a negative slope
no smaller than−2. The function (30) has always the zerox1 = 1, which corresponds to the
disordered phase. The fixed pointx1 = 1 is stable in the range

ln

(
1− q

z

)
= K ′c < K < Kc = ln

(
1 +

q

z− 2

)
. (31)

The upper limitKc agrees with the Bethe–Peierls temperature obtainable by loop expansion [3].
At negative and small positive values ofK only the solutionx1 = 1 exists. Above a critical
K ′′c a pair of two further solutionsx2,3 appear (see figure 3). The solutionx2 with x2 < 1
satisfiesD(x2) < 1 and is therefore stable for allK > K ′′c . The other solutionx3 with x3 > 1
has negative magnetization and is stable aboveKc, where the disordered solution becomes
unstable. AboveK ′′c two possible states always exist. The boundary values decide which of
the two is adopted on the lattice. In the case ofz = 3 the value ofK ′′c is given by

K ′′c = ln
(
1 + 2

√
q − 1

)
< Kc. (32)
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Figure 3. FunctionR(x) for z = 3 given by (30) as function ofx for L = 0 and variousK. Solid
curves are forK > K ′′c , dashed curves forK 6 K ′′c . Stable fixed points correspond to zeros with
negative slope.

The transition atK ′′c is of first order sincem(x2(K
′′
c )) 6= 0. Below the Bethe–Peierls

temperature 1/Kc a negatively magnetized phasem(x3) < 0 replaces the disordered phase.
This transitionx1↔ x3 is of second order sincex3(Kc) = 1 holds. Expanding the fixed point
x(K,L) of (4) around the valuesK = Kc andL = 0 up to order(K −Kc), L we find for the
magnetization as a function ofK

m(K)|L=0 = −2(z− 2)q(K −Kc)
(q − 2)(z− 1)

(33)

and as a function ofL

m(L)|K=Kc = −
q

z

√
2qL

(q − 2)(z− 2)(z− 1)
. (34)

Taking the derivative ofm with respect toL we get the zero-field susceptibility nearKc

χ(K) = ∂m

∂L

∣∣∣∣
L=0

= 1

z

(
q

z− 2

)2

|K −Kc|−1. (35)

From equations (33)–(35) we read off the critical indicesβ = 1, δ = 2 andγ = 1. Note
thatL has to be positive nearKc, otherwise no fixed point will exist. In the antiferromagnetic
caseK < 0 there exists no positive fixed point besidesx1 = 1. If we decreaseK belowK ′c
the iterated recursion formula exhibits a stable orbitx± of lengthτ = 2 corresponding to an
antiferromagnetic ordering, since the magnetization alternates from shell to shell. This can
occur only for 26 q < z. The critical pointK ′c has been found already in [15].

The Ising caseq = 2 is exceptional due to its global symmetry, which states that any
two fixed pointsx± satisfyx+x− = 1. This implies the relationK ′′c = Kc = |K ′c| and that
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the antiferromagnetic magnetizations atK < −Kc can be obtained from the opposite equal
magnetizations atK > Kc. In the special casez = 3 we get

m± = ± 1

1− 2e−|K|

√
e|K| − 3

e|K| + 1
. (36)

ForK > Kc equation (36) gives the two possible magnetizations and forK < K ′c = −Kc
the magnetization of adjacent shells. An expansion analogue to equations (33)–(35) yields
the valuesβ = 1

2, γ = 1 andδ = 3. These mean-field indices are expected from an infinite-
dimensional lattice as the Bethe lattice.

In contrast we encounter forq > 2 second-order transitions at the Bethe–Peierls pointKc
with percolation indices and atK ′c with mean-field indices. In addition a first-order transition at
K ′′c < Kc occurs. Investigating the stability of the system by the free energy, one would obtain
only a first-order transition atK ′′c < KB < Kc, wherefB(x1,KB) = fB(x2,KB) holds [15].
The statex3 would be metastable andK ′c,Kc would correspond to spinodal points.

5. Logistic equation

The recursion formula (4) can be extrapolated toq = 1 without leading to a trivial result.m
andwc2 from (10) and (18) remain nonzero. Due to the normalization factor in (9) and (18) the
limit q → 1 is equivalent to takingd/dqA(q)|q=1 for an observableA. ForK > 0 [24] this
limit corresponds to bond percolation with a probabilityp = 1− e−K . At least for the Bethe
lattice withz = 3 we can interpret theq → 1 limit by another model valid for allK andL,
namely the logistic equation. The recursion formula (4) reads in this case as

xn = e−K − eKu(xn+1)
z−1 (37)

with the parameter

u = e−K(e−K − 1)e−L. (38)

Performing forz = 3 a linear transformation

yn = 1
4

(
2 +

(√
1 + 4u− 1

)
eKxn

)
(39)

we obtain foryn the logistic equation

yn = ryn+1(1− yn+1) (40)

with the control parameter

r = 1 +
√

1 + 4u. (41)

Therefore, we found a correspondence between the thermal equilibrium properties of the
Pott’s model on a (z = 3)-Bethe lattice and the logistic equation. The thermal distributions
depend on the boundary condition and this dependence is described by the logistic equation.
Equation (40) has been studied extensively in the literature [25]. We notice a universal property
that the control parameterr depends only on the combinationu, but not onK orL separately.
Systems at constantu have the same type of solutions.u must satisfy the inequalityu > − 1

4,
otherwise (37) has only chaotic solutions, which meansxn for anyn > 1 is sensitive to the
boundary conditionxR. Since for the control parameter in (41)r > 1 holds, the trivial fixed
pointy = 0 of (40) is always unstable. In the range 1< r < 3 or−1< 4u < 3 corresponding
to the range (31) atL = 0 we encounter the stable fixed point

x = e−K

2u

(√
1 + 4u− 1

)
. (42)
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From the general formula (18) for the correlation function we obtainwc2 in the fixed-point case:

wc2(λ, r) = λe−Lx3
(

1
2(1−

√
1 + 4u)

)r
. (43)

The signs in (43) forλ = 1 exhibit forK < 0 or u > 0 an antiferromagnetic ordering.
Increasing the value ofu beyond3

4 (in the antiferromagnetic region) a series of period doubling
occurs, followed by a region of deterministic chaos. Aboveu = 2 only chaotic solutions
remain. The solutions corresponding to aτ = 2 orbit read

x± = e−K

2u

(
1±√4u− 3

)
. (44)

According to (22) this orbit is stable in the range 3< 4u < 5. Note that negativex are not
excluded by positivity ofw1(σ ) in the limit q → 1. For the correlation function we find from
(18)

wc2(λ, r) = λ(−1)r
(
xα0xαr

)3/2
e−L(1− u)r/2 (45)

whereαi denote the type of the sitesi = 0, r. Despite the formal appearance of
√

1− u the
function (45) is analytic atu = 1. For 3

4 < u < 1 one observes the same antiferromagnetic
ordering as in (43) forK < 0. In the range 1< u < 5

4 we find a period doubling of the
sign pattern. The transition pointu = 1 implies a superstable cycle of the logistic equation.
At u = 1 all correlation vanish and the system disintegrates into uncorrelated shells of spins
with magnetizationm(x−) = 1 at odd points andm(x+) = 1− exp(−L)x3

+ at even points. At
L = 0 the ratio 1/x+ of expectation values〈δσ,σ̄ 〉 and〈1− δσ,σ̄ 〉 taken on a branch is equal
to the golden mean value 1/x+ = (

√
5− 1)/2 indicating maximal disorder. In both cases,

τ = 1, 2, the decay of the correlations is a function ofu only, whereas the amplitudes ofwc2
depends on bothK andL.

From the properties of the recursion formula (37) or the equivalent logistic equation (40)
we get the phase diagram of the Potts model extrapolated toq = 1 in theK,L-plane. This is
depicted in figure 4 for the casez = 3.

The linesu = − 1
4 andu = 2 separate the chaotic regimesu > 2 andu < − 1

4 from regions
with a possible stable orbit. For ferromagnetic coupling(K > 0) aboveu = − 1

4 we have
always the fixed-point solution given by (47) withm 6= 0 except the lineL = 0, wherem = 0
only forK < Kc holds. The lineL = 0 touchesu = − 1

4 atK = Kc = ln 2. Therefore, we
have a second-order transition which can be identified with the transition of bond percolation.
The critical indicesβ = 1, γ = 1 andδ = 2 we have derived already in the general case.
The connection to percolation we postpone to the last section. For antiferromagnetic coupling
(K < 0) we find the lineu = 3

4 separating the fixed-point solution from theτ = 2 orbit. The
lineu = 3

4 intersects theL = 0 axis atK ′c = − ln 3
2. The transition atK ′c is more complicated,

since one has to distinguish average and staggered magnetizationm0,s from equation (19).
Inserting (44) into (19) we find nearK ′c

m0 ∼ K ′c −K (46)

ms ∼
√
K ′c −K (47)

which implies critical indicesβ0 = 1, resp.βs = 1
2. By expanding theτ = 2 solution with

a staggered fieldLs we havem0|Ls=0,K=K ′c ∼ L1/δ0 with δ0 = 1, andms |L=0,K=K ′c ∼ L
1/δs
s

with δs = 3. Likewise we obtain fromχ0,s = ∂m(x+)/∂L0,s

∣∣
Li=0 ∼ (K ′c−K)−γ0,s the indices

γ0 = 0 andγs = 1 in agreement with the scaling relationβ(δ − 1) = γ . Occurence of two
order parametersm0,s atK = K ′c means a crossover phenomenon. ApproachingK ′c in the
K,L-plane atLs = 0,m0 is the relevant order parameter with indicesβ0, γ0 and approaching
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Figure 4. Phase diagram ofq = 1 Potts model in the plane of 1−exp(−K) and tanh(L/2). Above
the solid curvesu = − 1

4 andu = 3
4 we have a phase descibed by a fixed point. Between the latter

and the dashed curveu = 5
4 there exists a period 2 solution with a superstable cycle (dotted curve)

atu = 1. Period doublings happen betweenu = 5
4 andu = u∞ = 1.401 (dashed-dotted curve).

The region of deterministic chaos lies betweenu = u∞ andu = 2. Belowu = 2 andu = − 1
4 the

observables depend sensitively on their values at the surface (chaos).

K ′c in theK,Ls-plane atL = 0,ms is relevant with indicesβs, γs . In contrast toKc, the point
(L = 0,K ′c) corresponds to a multicritical point. Aboveu = 5

4 theτ = 2 orbit is to be replaced
by aτ = 4 orbit. Further period doublings occur in the regionu < u∞ = 1.401 1551. In the
region of deterministic chaosu∞ < u < 2 stable orbits are surrounded by chaotic solutions.
We usedz = 3 since it allows explicit calculation ofw2 andx. We expect a similar pattern [26]
for all oddz, since the Feigenbaum route to chaos depends only on the property of the recursion
formula (37): that its right-hand side has a single maximum atx = 0. For evenz the extremal
valuex = 0 corresponds to a saddle point. We found numerically that forz = 4, 6, 8 apart
from the period 2 solution no further period doubling occurs. Comparison of the casesz = 5
andz = 4 is given in figure 5. The rich structure observed forz = 5 in x as function ofu at
L = 0 is absent inz = 4.

6. Cluster interpretation

In the previous section we learned that theq = 1 limit of the Potts model and the logistic
equation are connected by the fact that the latter describes the mean-field equation for the
equilibrium properties of the Potts model. Conventionally [9] theq = 1 ferromagnetic Potts
model is interpreted as bond percolation. In this section we wish to investigate to what extent
the more interesting antiferromagnetic case(K < 0) and percolation are related.

Any observable in the Potts model can be obtained from the two-point correlationwc2. The
bridge to percolation is the interpretation ofwc2 from equations (43) and (45) as the probability
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Figure 5. Fixed points and orbits as function of exp(−K)(exp(−K)−1) for z = 5 (left) andz = 4
(right).

that the origin and a point at distancer are in the same cluster.wc2 > 0 can be achieved
for r > 0 by selectingλ(r). We have to find a more general percolation as the usual bond
percolation, sincewc2(λ, r) depends on two parameters (L andu) and distinguishes between
odd and even originsα0. In addition,wc2(λ, r) may violate 06 wc2(λ, 0) 6 1. As observed
by Leads [27] bond percolation is equivalent to a cluster-growth model, where from a starting
point further links are added with probabilityp and rejected with probability 1−p. Today this
algorithm is known as the Wolff algorithm [28].wc2(λ, 1) 6 1 in all cases suggests that we
should start in a generalized growth model with a link instead of a site. This link is chosen with
probabilitypL and enlarged to a cluster by the following algorithm. Each site of a link will be
continued toi − 1 further links with probabilitypi with i = 1, . . . , z. If we label the sites of
an AB-lattice as the Bethe lattice withα = ±1 corresponding to a possible antiferromagnetic
order, these probabilitiespi,α may depend on the typeα of the site. Continuing this procedure
we construct a cluster, which can be characterized byEi,α equal to the number of sites of
typeα connected toi neighbouring sites. Using the geometry of a Bethe latticeE1,α can be
expressed by the other. In the casez = 3 there are two relations

E1,α = 2E3,−α − E3,α +E2,−α − E2,α + 1. (48)

Figure 6 gives an example forz = 3 with E2− = 2, E3+ = 1 andE3− = E2+ = 0. It occurs
with probabilitypLp2

1+p1−p2
2−p3+. A general cluster with numbersEi,α may begin on either

site with typeα0 of the first link. Its probability under the condition of presence of the first
link is given by

wα0(E|L) = g(E)
∏
i,α

(pi,α)
Ei,α (49)

whereg(E) denotes the combinatorial number of different clusters with given numberEi,α.
The probabilitywα0 for any cluster

wα0 =
∑
E

wα0(E|L) (50)

needs not be 1. In analogy to the Bolzmann distribution for a tree as in section 2, the probability
wα0 satisfies a recursion formula. For a growth model with period 2 we get

w−α0 = p1,α0 + 2p2,α0wα0 + p3,α0w
2
α0
. (51)

Solving the two equations (51) forwα0(p) and expandingwα0 in powers ofpi,α the
combinatorical factorg(E) in equation (49) can be determined. The explicit form ofwα(p) is
not needed if we are interested only in the correlation function, which is the probability that
one site (origin) at the starting link appearing with probabilitypL is connected (see figure 6)
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Figure 6. The left part gives an example for a cluster growing from the linkL. The right part
shows the graph for correlations between an origin 0 and a point in distancer = 5. Squares denote
any possible contuation atE3± points occurring with probabilityw±.

by r − 1 further links to a site in distancer. The probabilityρα for such links connecting a
site of type−α with a neighbour of typeα is given by

ρα = p2,α + p3,αwα. (52)

Multiplying all probabilities we find the correlation function connecting 0 with a point at
distancer, as in figure 6,

0α(r) = wα · pL ·
{
(ρ+ρ−)

r−2
2 wαρα r > 0 even

(ρ+ρ−)
r−1

2 w−α r odd .
(53)

Note that0α(0) is neither defined nor needed. We can considerqα,wα as independent
parameters and do not need to perform the elimination of equations (51), (52). In the case of
α-independent probabilitiespi,α = pi , equations (51) and (52) can be solved leading to

ρ = 1
2

(
1−

√
(1− 2p2)2 − 4p1p3

)
(54)

w = 1

p3
(ρ − ρ2). (55)

In this case (53) can be extrapolated tor = 0 by introducingp0 as

p0 = 1

ρ
w
p

L (56)

being the probability for the presence of a single point which leads to the simple formula

0(r) = p0 · ρr . (57)

Due to the constraint (48) the relation betweenpi,α andqα,wα is not unique. In addition,
the link probabilitypL in equation (53) orp0 in equation (57) is a free parameter. A model
with greatly reduced freedom ofpi,α is theα-independent bond percolation, where the growth
parameterspi are given in terms of a link probabilitypL through

p1 = (1− pL)2 p3 = p2
L p2

2 = p1p3. (58)

Inserting equation (58) into equations (54)–(56) we find forpL 6 1
2

ρ = pL w = p0 = 1 (59)

and forpL > 1
2

ρ = 1− pL w =
(

1− pL
pL

)2

p0 =
(

1− pL
pL

)3

. (60)

This shows the percolation phase transition atpL = 1
2. In the growth model we avoid the

notion of an ‘infinite’ cluster forpL > 1
2 by the probabilityp0 < 1, that a point belongs to
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a cluster at all. Comparing equation (53) with the correlation functionwc2(α, r) of the Potts
model equation (45) in the fixed-point regime we can identify

p0 = x3e−L = 1−m (61)

ρ = |ε| = 1
2

∣∣∣√4u + 1− 1
∣∣∣ . (62)

Both, percolation and the Potts model have in common that the decay parameterε (resp.ρ) of
the correlation function and the magnetization 1− m (resp. the point probabilityp0) can be
chosen independently. AtL = 0 we have in both cases only one free parameter. Using the
bond percolation parametrization (58) forpi and expressingu in terms of e−K we find the link
probability

pL = |e−K − 1| (63)

p0 = x3 = 1−m =
{

1 K ′c < K < Kc

(eK − 1)−3 K > Kc.
(64)

The critical pointspL = 1
2 correspond toK = Kc,K ′c. Whereas for ferromagnetic coupling

(K > 0) Kc is inside the validity of the fixed-point regime, the antiferromagnetic transition
K ′c is located at the border. This is due to the change of a fixed-point solution into an orbit
τ = 2 solution. ForK < K ′c we have to compare the general formula (45) forwc2(α, r) with
00 from the percolation model (53). Identification of the decay parameter leads to

ρα = εα = 1
2

∣∣∣1 +α
√

4u− 3
∣∣∣ . (65)

Since the amplitude involves the link probabilitypL which can be no longer eliminated with
an argument leading to (56), we can compare only the ratios

wα

w−α
= εα

ε−α
=
∣∣∣∣ xαx−α

∣∣∣∣ . (66)

From the value ofwc2(α, 1) we find

w+w−pL = (1− u)2
(

e−K

u

)3

. (67)

Any cluster-growth model with (65) for the decay parameter and (66), (67) forwα andpL will
have the same correlation function as theq = 1 Potts model withz = 3 in the period 2 phase.
In particular, the ratio|x−|/x+ of the period 2 solution of the logistic equation appears to be
the ratiow−/w+ of having a cluster starting at a point of typeα = ±1.

7. Conclusions

The thermodynamic properties of theq-state Potts model on a Bethe lattice can be exactly
calculated by mean-field methods. The parametersxn andan (magnetization and partition
sum of a branch) can be determined recursively from the valuesxR, aR at the surface. The
formula forxn relevant for local correlations expressed byw2 may have a stable fixed point
or orbit. This means thatw2 is insensitive to the boundary conditions for sufficiently large
distances from the surface. In contrast,an relevant for global quantities as the free energy
and its derivatives is always sensitive toxR andaR. This reflects the difficulty to obtain the
Bethe lattice by extrapolating Cayley trees to large sizes, since the influence of the surface
points and the transition region (ifxR is not exactly at the fixed point) cannot be neglected. A
natural way to treat the Bethe lattice is to consider a sublattice ofn0 shells, where the distance
R–n0 is large enough thatxn can be replaced by a fixed point. Generalizing the method of
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Baxter [5] to anyq a free energy for this subsystem can be found [23] from the magnetization
and the energy/bound insiden0. However, due to surface instabilities this function should not
be used to reject fixed points on the basis of its value. Instead one should use the stability
of the fixed point or the orbit. Applying this criterion to the zero-external-field case we find
for q > 2 and ferromagnetic coupling a first-order transition and a second-order transition at
the Bethe–Peierls temperature with critical indices of the percolation class. The transition to
antiferromagnetic ordering at negative coupling is also of second order, but with indices of
the mean-field class. The Ising caseq = 2 is exceptional, since its ferromagnetic transition
atKc and its antiferromagnetic transition atK ′c = −Kc are related and are both of second
order with mean-field indices. Of particular interest is the extrapolation toq = 1. In the case
of z = 3 the recursion relation forxn is identical to the logistic equation. This equivalence
holds for anyK andL, whereas the usually discussed equivalence with bond percolation is
only valid forK > 0 andL = 0. For antiferromagnetic couplingK < 0 we encounter in
the phase diagram the rich structure of the logistic equation (sequence of period doubling,
supercycles, deterministic chaos). We found that the first period doubling atL = 0 of the
logistic equation corresponds in theq = 1 Potts model to a multicritical pointK ′c, where two
second-order transitions exhibit a crossover: one with critical indices of the mean-field class
and a second with indicesδ = β = 1 andγ = 0. The first superstable cycle of the logistic
equation corresponds to a situation where uncorrelated spins are antiferromagnetically ordered
in shells. One shell has magnetizationm− = 1 and the neighbouring shell a valuem+ related
to the golden mean. By a Feigenbaum-type argument a similar pattern should arise for any odd
z. On the Bethe lattice one can generalize bond percolation to a cluster-growth model, which
can be interpreted by the (q = 1)-Potts model also forL 6= 0 andK < K ′c. Since the latter is
also related to the logistic equation, the cluster-growth model may serve as a dynamical model
for applications of the logistic equation in economical problems [29].
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